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We investigate the complex flow field around a sphere rising in a Maxwell fluid by means of the lattice
Boltzmann simulation to provide insights into the strange negative wake experimentally observed behind a
bubble or particle in non Newtonian fluids. The influence of the rise velocity, sphere diameter, and fluid’s
rheology is considered through two dimensionless numbers: the Deborah number De and the Reynolds number
Re. Our simulation shows that the negative wake appears behind the sphere when De�2. On the other hand,
the shape of the negative wake described by the opening angle � of the upward flow cone surrounding the
negative wake is mainly determined by the Reynolds number Re. These results reveal that the physical origin
of the negative wake stems mainly from the competition between the elastic and viscous stresses in the fluid.
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INTRODUCTION

The motion of an isolated bubble in fluids has been the
focus of both academic and industrial interest, and attracted
the attention of scientists for a long time �1�. Compared to
bubbles in Newtonian fluids, much less is known about the
bubble behavior in non-Newtonian fluids. In particular, the
fundamental physical mechanism remains unclear concern-
ing some peculiar phenomena not observed in Newtonian
fluids such as the so-called negative wake shown by laser
Doppler anemometry �2�, the complete wake with both a
negative wake and an upward flow cone obtained by particle
image velocimetry �PIV� �3�, as well as the memory effects
in stress relaxation in bubble coalescence �4�. Due to the
inherent complex nature of bubble phenomena and the influ-
ence of the fluid’s rheology, an exhaustive theoretical analy-
sis is still beyond reach at present. Since the pioneering work
�5�, the main contributions in the literature have been de-
voted to both the experimental measurements of the bubble
rise velocity in such fluids and the visual observation.

In the past, several numerical studies �6–13� have also
been performed for the flow past spheres in viscoelastic flu-
ids by means of different numerical methods, such as finite-
element analysis and distributed Lagrange multiplier meth-
ods. These computations concern mainly the typical
constitutive equations like the Chilcott-Rallison version of
the Finitely Extensible Nonlinear Elastic �FENE-CR� dumb-
bell or Oldroyd-B models with a relatively limited Deborah
number De. In particular, the numerical results raise the re-
curring question of why negative wakes occur in some poly-
meric fluids while others show the opposite behavior. One
suggestion is that both shear thinning and elasticity would be
necessary for the formation of a negative wake. Also, shear
properties alone cannot explain some experimental observa-
tions �9� that fluids with similar shear properties can show
widely different wake profiles.

The present work aims at gaining insight into the physical
origin of the complex wake phenomena behind an isolated

bubble rising in a non-Newtonian fluid. The lattice Boltz-
mann �LB� approach is developed to explore computation-
ally the interesting and so far unexplained role of interactions
between rheological effects and inertial effects on the wake
structure by means of a simple linear rheological equation.

I. PREVIOUS RESULTS

Early experiments on polymer solutions revealed a re-
markable viscoelastic flow phenomenon, termed a negative
wake �2�. The fluid behind the bubble moves downward, in
the opposite direction to the rising bubble. This intriguing
flow pattern was also reported for rigid spheres falling
through a viscoelastic fluid �14,15�. These experiments were
mainly carried out with a laser Doppler anemometer that
provides a partial flow field at a point in fluid. Recently, the
development of the PIV technique has allowed one to obtain
a complete two- �2D� or three-dimensional �3D� flow field in
a measurement window. In the case of the rise of a bubble
through a viscoelastic fluid that is an axisymmetric flow,
Funfschilling and Li revealed, by using a PIV device, that the
2D flow field around a bubble in such media is quite com-
plex indeed �3�. In front of the bubble, the flow field is up-
ward and similar to that in a Newtonian fluid due to the
ascension of the bubble. The strangest feature of the flow
field is the negative wake that occurs just behind the bubble.
Around this negative wake, the fluid flow is upward with a
conical shape �Fig. 1�. It is thus possible to determine the
open angle � of the upward cone to characterize the flow
pattern �Fig. 1�. Moreover, our previous experiments show
that � decreases with increasing Reynolds number Re. In
particular, � is close to 180° for small values of Re.

The fundamental origin of the negative wake remains un-
clear up to now. Contradictory results between different au-
thors in the literature contribute also to keeping alive this
mystery. One possible suggestion is that the negative wake
occurs in shear-thinning and elastic fluids. Our recent LB
simulations performed with a nonlinear rheological model
and the free-energy-based diphase scheme led to a good
agreement with experiments for flow field, bubble shape, and
stress field �16�. However, due to the complex nature of the*Electronic address: li@ensic.inpl-nancy.fr
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rheological model for describing the fluids, the contribution
to the negative wake cannot be clearly divided between the
nonlinear elasticity and viscous shear-thinning effects. In ad-
dition, the specific elongated shape of bubbles in such media
could play a role in this flow pattern.

In the present work, we focus on the physical understand-
ing of the negative wake by considering simply a linear rheo-
logical equation for the fluid and neglecting the bubble’s
shape evolution. Thus, the flow is only induced by the rise of
a sphere in a 2D column. We consider then the rise of a
sphere of diameter dB with a rise velocity uB. The 2D column
has a width of �dB and a height of ��dB, where � and � are
simple multiplication factors. As shown in the following
validation section, �=10 and �=2 are found as a suitable
compromise solution between minimizing wall effects and
having a reasonable computation time. To define equations in
dimensionless form, we choose dB as the characteristic
length and uB as the reference velocity.

It is worth noting that stress boundary conditions for a
solid sphere are not the same as for a bubble. To eliminate

the possible contribution from both the deformable interface
of a bubble and the stress-free boundary conditions to the
negative wake, simple no-slip boundary conditions for a
solid sphere are implemented in our simulations.

II. MACROSCOPIC EQUATIONS

For the sake of generality, we express the equations of the
fluid with dimensionless numbers. First, the basic equation is
the classical Navier-Stokes equation

�u�

�t
+ �u� · �� �u� = − �� P + �� · � . �1�

If we define the shear rate tensor Di,j =�ui /�xj +�uj /�xi,
deduced from the finite-difference scheme, the stress tensor
�, within the framework of the Maxwell model, is described
by the linear equations

��

�t
+ �u� · �� �� = −

1

De
�� − �eq� , �2�

�eq =
1

Re
D . �3�

We define the Deborah number De by De=�uB /dB and
the Reynolds number as Re=�LdBuB /	 where � is the char-

acteristic time of the fluid. If the advection term �u� ·�� �� is
neglected, we obtain then the simple Maxwell equation

��

�t
= −

1

De
�� − �eq� . �4�

A linear constitutive equation could seem to be too simple
with respect to a real non-Newtonian fluid. However, such an
approach is not rare in the literature �17�. Our previous stud-
ies on the mechanism governing the in-line interactions and
coalescence between bubbles in non-Newtonian fluids have
shown that such an equation can satisfactorily capture the
large experimental wealth of data about the dynamical com-
petition between the creation of stresses after the passage of
bubbles and their relaxation, displaying temporarily a re-

FIG. 2. Comparison of the drag coefficient between the Stokes
equation modified by the Faxen correction and our LB simulations.

FIG. 1. Experimental PIV measurement of the flow field around
a bubble in 0.75% polyacrylamide solution. Left: bubble volume
V0=250 mm3, the Reynolds number based on the zero shear rate
viscosity Re=0.01. Right: bubble volume V0=1200 mm3, Re
=0.05. Real bubble shapes are added.
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duced viscosity �18�. Moreover, the use of a linear equation
can also avoid the trap of the contradictory results in the
literature which could arise from the nonlinearity of the rheo-
logical equations. From a fundamental point of view, if we
demonstrate the existence of a negative wake even with such
a simple constitutive equation, we can exclude then the pos-
sible numerical artifact due to the interference of a complex
nonlinear equation of rheology.

III. APPLICATION OF THE LATTICE BOLTZMANN
METHOD

For a decade, the LB method has emerged from nonequi-
librium statistical physics to become an alternative numerical

method in fluid dynamics �19–22�. In contrast, the extension
of the LB simulation to non-Newtonian flows has received
limited attention so far, as mentioned in �23�.

To perform the numerical simulation of the rise of a
sphere in a viscoelastic fluid, the Navier-Stokes equation is
not explicitly implemented in our LB scheme. In fact, the
fluid motion is described by a particle probability density
function �PPDF� f i. Particles are forced to jump from a node
of the lattice to a neighboring one, which can be done only
with the velocities c�i that define, with the node positions, the
lattice. In such a way, f i is, at one point, the number of
particles having the velocity c�i. The main relevant hydrody-
namic quantities are expressed as functions of the momenta
of f i,

FIG. 3. LB simulations with De=10 and Re=0.4 with advec-
tion. �a� Fixed sphere and sliding walls; �b� rising sphere and fixed
walls.

FIG. 4. LB simulations with De=10 and Re=0.4 without advec-
tion, rising sphere and fixed walls. �a� 200
400 nodes; �b� 400

800 nodes.
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� = �
i

f i, �5�

�u� = �
i

f ici�. �6�

We use a classical D2Q9 lattice which is a two-
dimensional lattice involving nine velocities. The lattice
Bhatnagar-Gross-Krook equation, which is an approximation
of the general LB equation, can be written as follows:

f i�r� + �tc�i,t + �t� − f i�r�,t� = − 
�f i − f i
eq� . �7�

Intrinsically, the LB scheme involves purely viscous
stresses that are superimposed on viscoelastic stresses �. To
compare their importance to the inertia, we can define a lat-
tice Boltzmann Reynolds number ReLB that is linked to the
frequency parameter 
 and time step �t as �t= �ReLB�x2 /3�

�1/
−1/2�. We choose here to fix ReLB=10 in order to
limit the influence of pure LB viscous stresses �24�.

Macroscopic quantities such as mass and momentum are
used to compute the equilibrium values f i

eq in the form of
polynomial expressions. The momenta of these distributions
obey

�
i

f i
eq = � , �8�

�
i

f i
eqci� = �u�, �9�

�
i

f i
eqci�ci� = �u�u� + �cs

2��� − ���, �10�

�
i

f i
eqci�ci�ci� =

�

3
�u���� + u���� + u����� . �11�

The viscoelasticity is included by modifying the equilib-
rium distribution equation as shown in �10�. Another imple-
mentation of the viscoelastic stress in a LB framework was
proposed by Giraud et al. �25�. These authors added two
distributions f i to the PPDF in order to establish a linear
relationship between the 11 PPDFs and all macroscopic sig-
nificant quantities, including the viscoelastic stress tensors.
With LB relaxation times depending upon i, it is then pos-
sible to make use of the Jeffreys rheological model. Such an
approach was applied to the computation of the shape of a
bubble rising in a viscoelastic fluid �26�, but without infor-
mation about the flow field.

We introduce the rise of a sphere by modifying the veloc-
ity expression:

�u� = �1 − ���
i

f ici� + ��uB�. �12�

The index � is computed for each time step as the posi-
tion of the sphere changes. To avoid numerical instability, the

sphere’s rise velocity uB
� is progressively increased up to a

stationary value. The value �=1 means inside the sphere
and �=0 outside the sphere.

IV. VALIDATION

To validate the implementation of such boundary condi-
tions, we performed the simulations of a solid sphere settling
down in cylinders of varying diameters. The computed drag
coefficient Cd for different Reynolds numbers Re compares
satisfactorily with the well-known Stokes equation modified

FIG. 5. LB simulations with De=10 and Re=0.4 without advec-
tion, rising sphere, fixed walls, and larger column. �=20 and
ReLB=10. FIG. 6. LB simulations with De=10 and Re=0.4 without advec-

tion, rising sphere and fixed walls. �=10 and ReLB=24.
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by Faxen’s correction due to the wall effect �Fig. 2�.
To check the possible advection effects, we performed

consecutively three numerical tests under varying De and Re
values. First, we used Eq. �2� for the flow field around a fixed
sphere with the walls moving downward. Second, the simu-
lation was conducted for a rising sphere with fixed walls. As
there is no significant difference between the first simulation
and the second one �Fig. 3�, the Galilean invariance of Eq.
�2� seems to be respected within the conditions for our simu-
lation.

Finally, we used the simple Maxwell equation without
advection �4� for a rising sphere with the walls at rest. More-
over, the similar results obtained by the third simulation with
respect to the first and second ones tend to confirm that the
advection plays only a minor role in the walls’ reference
frame.

For these reasons, we adopt finally the simple Maxwell
model �4�. Our model is grid convergent as simulations were
tested with lattices of respectively 200
400, 300
600, and
400
800 nodes �Fig. 4�.

FIG. 7. LB simulations with De=10 and Re=0.2 in the transient regime at time t= �a� 1.25, �b� 3.75, and �c�=5.00; �d� at time t
=7.50 in the stationary flow regime.
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The definition of the 2D column is based on the sphere’s
diameter dB: width of �dB and height of ��dB. To verify the
possible role of the side walls in the flow around the rising
sphere, several numerical experiments were conducted with
different values of � for the width of the column. Clearly,
limited widths of the column �for ��8� do affect the flow
picture. In addition to the heavy computation, very high val-
ues of � were not found necessary to conserve the flow fields.
A typical result with �=20 is shown in Fig. 5. With respect to
a smaller simulated flow area with �=10 �Fig. 4�, the funda-
mental characteristics of the flow, in particular, the negative
wake behind the sphere, are significantly similar. Quantita-
tively, the cone angle of the negative wake is 57.0° for �
=10 and 55.5° for �=20. We consider then the value of �
=10 large enough to avoid the effects of side walls.

Finally, the possible role of the numerical viscosity within
the LB scheme was investigated in the present work through
varying the value of the lattice Boltzmann Reynolds number

ReLB. Even with an excessively high value of ReLB=24 as
shown in Fig. 6, the modification of the flow picture can be
considered as negligible compared to the previous simulation
with ReLB=10 �Fig. 4�.

FIG. 8. Simulated flow fields around a sphere rising in a simple
Maxwell fluid for Re=0.5; De= �a� 1.0 and �b� 5.0.

FIG. 9. Simulated flow fields around a sphere rising in a simple
Maxwell fluid for Re=1.0. De= �a� 1.0 and �b� 5.0.
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V. TRANSIENT FLOW FIELD

The numerical simulation is performed by accelerating
progressively a sphere initially at rest to reach a stationary
rise velocity uB. The temporally evolution of the flow field
can then be consecutively obtained. A typical example is
illustrated in Fig. 7 showing the transient modification of the
flow picture toward the establishment of a stationary flow
regime with De=10 and Re=0.2.

As we can see in Fig. 7�a�, the flow around the sphere at
the beginning of the rise is quite similar to the Newtonian
case. Progressively, a long wake appears behind the sphere
as the fluid is increasingly deformed to produce significant
viscoelastic stresses shown in Fig. 7�b�. At a critical point,
the central flow behind the sphere is suddenly reversed: the
initial upward flow in the wake is pushed down to create the

well-known negative wake surrounded by a conical upward
flow �Fig. 7�c��. Then, the negative wake and the upward
cone become spatially more extended to reach finally the
stationary flow field �Fig. 7�d��.

VI. TRANSITION TO THE NEGATIVE WAKE

First, we verify the influence of elastic stresses as a pos-
sible origin of the negative wake. These stresses are created

FIG. 10. Simulated flow fields around a sphere rising in a simple
Maxwell fluid for De=10. Re= �a� 0.05 and �b� 0.4.

FIG. 11. Simulated flow fields around a sphere rising in a simple
Maxwell fluid for De=20. Re= �a� 0.05 and �b� 0.5.
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by the sphere passage, and relax in the wake behind the
bubble. They are mainly described by the Deborah number
De.

The LB simulations are performed under various Deborah
numbers De ranging from 0.5 to 5 for two Reynolds numbers
Re=0.5 and 1.0.

As shown in Figs. 8 and 9, the negative wake occurs for
De�2. For De�2, the flow is quite close to that in New-
tonian viscous flows, as the relaxation of viscoelastic stresses
is faster than their generation by the shear due to the passage
of the sphere. On the other hand, the competition between
these two antagonistic mechanisms moves in favor of the
stress relaxation when De�2 as viscoelastic stresses require
a very long time to relax.

It is worth noting that the flow fields with high De values
described by the LB simulations are in good qualitative
agreement with our experimental measurements of bubbles
rising in different polyacrylamide solutions by means of a
2D PIV device �3�. Certainly, the consideration of the bub-
ble’s shape as well as a nonlinear constitutive equation of
rheology can lead to a better quantitative description of the
flow field around a nonspherical bubble �16�. But the central
question about the existence of the negative wake receives a
satisfactory response from the key parameter, that is, the
Deborah number De. The origin of the negative wake can be
clearly attributed to the viscoelastic character of the fluid.

VII. OPENING ANGLE

To gain insight into the experimentally observed modula-
tion of the opening angle �, we consider the influence of the
Reynolds number Re which depends mainly on the sphere’s
size and fluid’s properties. The LB simulations are also car-
ried out under various Reynolds numbers Re ranging from
0.01 to 1 for two Deborah numbers De=10 and 20 above the
critical value De=2 for the negative wake.

The simulated flow fields are shown in Figs. 10 and 11.
Clearly, the opening angle � decreases with increasing Re.
Quantitative measurements of � as a function of Re for both
De=10 and 20 in �Fig. 12� confirm qualitatively the experi-
mental tendency �27�. In particular, the decrease of � is also
limited for large Re by a finite asymptotic value that depends
on the Deborah number.

CONCLUSIONS

The rise of a rigid sphere in a linear viscoelastic fluid of
Maxwell type is studied by means of lattice Boltzmann simu-
lations. Two dimensionless numbers are identified as central
to the existence of the negative wake as well as its form: the
Deborah number De and the Reynolds number Re. The elas-
tic origin of the negative wake is clearly proved by the nec-
essary requirement for the Deborah number De�2. More-
over, the simulation results show that the opening angle � of
the upward flow cone surrounding the negative wake de-
creases from 180° for small Re toward an asymptotic value
for large Re. The complete flow fields obtained by the LB
simulations capture satisfactorily the main experimental fea-
tures of bubbles rising in viscoelastic fluids without any fit-
ting parameter. It is noteworthy that such complete and com-
plex flow fields around a sphere under wide ranges of both
De and Re are still missing up to date in the literature of
numerical simulations in non-Newtonian fluids. Further LB
simulations will be focused on the interactions between ris-
ing spheres or bubbles with both linear and nonlinear consti-
tutive equations of fluid rheology. Moreover, a fully 3D
scheme should be employed to describe the complex flow
structure.
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